OpenSRF via Java

What we learned doing
OpenSRF via Java

YF\

© 201 | Alpha-G Consulting, LLC M

‘L\/u

Alpha-G Consulting

= Data Migration

= System Administration
= Support

= Hosting

= Reporting/Data Transfer & Interchange
= Contact john@alphagconsulting.com

= Slides: http://alphagconsulting.com/EvgConf201 |/

Content of Presentation

= Target Audience
> Potential/Current Java OpenSRF programmers

= Focus is on OpenSRF interaction via Java

» Hoping to help others get off to better start by
providing some basic patterns

» Outline of some work we'd like to do to make
Java development simpler

= Presentation excludes adding to OpenSRF

> Basic patterns for interacting w/ existing
methods via Java

Caveats and Considerations

= There's a lot to know; we're still learning

= Our project works, but it is not:
> A sterling example of best practices
> Polished/complete

m Qur plans include:

> Creating Java classes to simplify future
development

> Rewriting this project
= Interested in Java? Get in touch, please.

The Problem: Duplicate Bibs

= Georgia PINES Library System

= Fach member library's bibs loaded
» No de-duping done as libraries added
» Many duplicate bib records
» Hand de-duping impractical

= Client contracted with Backstage Library
Works to have MARC file de-duped

= How to reload de-duped MARC file into
Evergreen!

The Project: Overlay/Merge

= MARC file from Backstage Library VWorks
= Create Overlay/Merge Tool

= Overlay/Merge utility reads file:
> Overlays first matched record
» Merges additional matched records

> Logs & continues on error

Overlay/Merge Tool

biblio.record_entry

Deduped
MARC Rec Overlay 1st Rec
—® 35,706
Keys:
35,706 196,225
196,225 Merge others
197,984 197,984

Why Java?

= Experience: Lots of it
> Used with other library automation systems
> Extensive library-automation tool set

= Write [with] What You Know
» Familiar Conventions & Patterns
» Familiar Tools

= Diving into OpenSRF
> One thing at a time
> Trying to keep it simple

What we Learned

= We're Still Learning
m Dealing with OpenSRF

» Basic Patterns
» Using the Tools as Intended

= Some Specific Issues
> Version Incompatibilities
» Direct Database access vs. OpenSRF
» Overloading the Database Server
» Evergreen Versions Again
> License Complications

Cartoon Cavemen:
Mechanic & Assistant

Mechanic Assistant
Working on stone wheel Has a box of rocks

Hands over a rock.

[Looks down at rock in hand.] Peers at rocks in box.

Evergreen Java Tools

= When you don't know what the tools are
for, they all look like rocks (whether they
are or not).

= |f your assistant does not know the
difference between one tool and another,

they'll likely pick the wrong one.

m L earning the tool set is the main challenge.

org.opensrf packages

" net.xmpp
> Stripped-down XMPP (Jabber) communication

m test

> Testing various aspects of OpenSRF interaction
= util

> Config info

>]SON manipulation

» OSRF objects

> | ogging

org.open-ils packages
= id

» Handling of fm_IDL.xml object definitions
m test

> TestLogin

> TestIDL
= util

> Logging in

»MD?5 hash calculation

3rd-Party Packages

= VWWoodstox: com.ctc.wstx
> "High-performance” XML processor
» http://woodstox.codehaus.org/Download
= |[SON: org.json
> SON parsing & packing
> https://github.com/douglascrockford/J]SON-java
= Memcached: java_memcached
» OpenSRF Caching interaction

> http://www.docjar.com/jar_detail/java_memcached-release 2.0.1.jar.html

Learning to Use What's There

= Basic Understanding of the OpenSRF model

Read Dan Scott's "Easing Gently into OpenSRF"
http://journal.code4lib.org/articles/3284

= Double handful of Test/Example Programs

» Start wit
» Get the

n LoginTest and ClientTest
pasic patterns clearly in mind

» Extend t

nem for simple prototypes

= We Started with Attempting to get an

initialized

ClientSession (logging in)

Connecting:
org.open-ils.test. TestLogin

org.opensrf.Sys
(args|0] 7/ opensrf _core.xml
, /config/opensrf'’);

Map<String,String> params
= new HashMap<String,String>();

// Evg usrname/passwd (as for Staff Client login)
params. ("username", args[1l]);
params. ("password", args[2]);

org.open_ils_Event evt
= org.open_ials.util_Utils
(params) ;

Internals of Utils.login Method

Object resp
= ClientSession.
("open-1ls.auth"
, open-i1ls.auth.authenticate.init"
, hew Object [] {init}
E
. // a REALLY bad place for a breakpoint
resp = ClientSession.
("open-i1ls.auth"
, open-i1ls.auth.authenticate.complete”
, hew Object|]{params}

)

Found & Fixed Minor Bugs

= Xpath version differences
» /domains/domain should be /domain
> org.opensrf class sources
— ClientSession.java & Sys.java
> org.opensrf.util class source
— Config.java
= Also in Config.java

» Changed getint method to assume get method
returns an Integer for "/port" Xpath

Why Still Could Not Log In

Java Box's Config File Evergreen Host Config

192.168.1.179 Notin Config private.localhost
5222 5222
openstf openstf

opensrfPasswd opensrfPasswd

A Kludge to Get Logged In

= Change Java box's config to private.localhost
= Add an entry to the Java box's hosts file

127.0.0. | localhost
192.168.1.179 private.localhost

= Two facts of note:
> |t is inelegant, ugly, & poor practice; but
> |t does work.

Logged In (finally): Now What?

OpenSRFE/

Java Program Evergreen

——

OpenSRF Response

O
pe
n
S
R
F R
€
qu
€
st

@)
P
enSR
F/

]a
v
a
Prog
ram
E
v
e
t
oree
n

e
iy

O
pe
nS
R
F
Res
po
n
se

Central Issues: Calling Methods
= What is the method to do the job!?

= Did you establish ClientSession to the
method's service?

= How do you set up the parameters!

= How do you invoke the method!?

What Method?

®m Documentation is terse

= Used OpenSRF logging with Staff Client
> Set OpenSRF to logging level 4
» Edited and then saved bib record

= Asked for confirmation on #evergreen IRC
channel

> Interestingly, there was some discussion back
and forth

m Method determines ClientSession's Service

Methods:
Overlaying and Merging

= Overlay/Update biblio.record _entry
> Service : open-ils.cat
» Method: biblio.record.xml.update
» Params : auth-token, record-id, record-in-XML

= Merge Records
> Service : open-ils.cat

» Method: biblio.records.merge
> Params : auth-token, survivor-id, merge-ids

OpenSRF Method call in Java

String oSRFmethod
= "open-i1ls.cat.biblio.record.xml .update';

List< Object > params = /* add params to List */;

try {
org.opensrf._Request req

= org.opensrf.ClientSession
(oSRFmethod

, params);

} catch (org.opensrf.SessionException sessX) {
/* handle exception */

} // try / catch

Building Parameters

String xmlUpdateMethod
= "open-i1ls.cat.biblio.record.xml .update';

| List< Object > params = new ArraylList< Object >();
params.add(authKeyStr);
params.add(new Integer(recordID));

| params.add(marcXMLStr);

try {
org.opensrf._Request req

= org.opensrf.ClientSession
(oSRFmethod

, params);

} catch (org.opensrf.SessionkException sessX) {

Parameter Notes

= Auth Token

> Often required first parameter
= Pass Parameters in either:

> List< Object >

> Obiject]|]
= |[SON encoding handled by:

> ClientSession.request method
® Parameter Order is Critical

OpenSRF Responses

OpenSRFE/

Java Program Evergreen

IWWWWWWMWWWWMW

OpenSRF Response
= Descriptive Info
= Payload (recursive)

LoginTest's JSON Response

authtoken indicates successful
authentication; required parameter for
many methods you would use.

{ desc=Success

Nn=321c3593bblcee5f81f8e4ce2d583e63
8800 }

, payload={ authto
, authtime=

, pid=7930

, stacktrace=oils auth.c:444

, textcode=SUCCESS

, ilsevent=0
} It worked!

A Typical Raw JSON Response

- [" __c'":"osrfMessage"
,__p": "threadTrace":"0"
, 'locale":"en-US"
, type" " RESULT"
, payload": " c':"osrfResult"
,._p': "status':"'OK"
, 'statusCode' :""200"

J'content™': " c':'"bre™

SR)

Name/Value Pairs: HashMap< String, Object >
Array Elements: Object| | or List< Object >

JSON Raw Response (continued)

Class Name

“‘content™: ‘////

" c":"bre"
. p":[null, null, "t", "2010-02-23T05:21:02-0700""

, 1, "f'", "2011-02-18T23:43:00-0700", O

. 'Smartapproachtokidsroomsconnelly"

, 16194

, '1298097803.987976851.92761712315"

, <record xmlns:xsi= ...
<leader>00967nam a2200325la 4500</leader>
<controlfield tag=\"001\">0cm43939472 ...
<controlfield tag=\"003\">0CoLC</controlfield>
<controlfield tag=\"005\"">20000525160721.0 ...
<controlfield tag=\"008\">000427s2000 njua ...
<datafield tag=\"010\"" 1nd1=\"" \"" 1nd2=\" \'>

<subfield code=\""a\"> 00101554 </subfield>

</datafield>

Members/Fields

Decoding an OpenSRF Response

= org.opensrf.Response
> getter methods for status, statusCode, & content
> getStatusCode returns HT TP-like values
(e.g. 200 == OK)
> getContent returns the payload's content
= org.open_ils.Event
> Extends HashMap
» Direct lookup

= Payload Objects must be in OSRFRegistry

Payload

Java

Payloads and Object Registry

“‘content':
" c":"bre
. pP":[null, null, "t", "2010-02-23T05:21:02-0700"
, 1, "f', "2011-02-18T23:43:00-0700", O
, Ssmartapproachtokidsroomsconnelly"
, 16194, '1298097803.987976851.92761712315"
""<record xmIns:xsi= ...

private static final String[] breFieldNames = new String[]

{ "call _numbers™"™, "fixed fields', '"active', '‘create_date"
, creator', "deleted", "edit date', "editor”

., Fingerprint"

, 'Updated record id", "last xact id", "Updated xml' __._};

private static OSRFRegistry registry

= OSRFRegistry.registerObject("'bre"
, OSRFRegistry.WireProtocol .ARRAY

, breFieldNames);

OSRFRegistry Correspondences

content'':

{"" c":bre"

. 22 null, null, "t", "2010-02-23T05:21:02-0700"
"', "2011-02-18T23:43:00-0700", O

Class rtapproachtokidsroomsconnel ly" Iﬁid
Name 1298097803 .987976851.92761712315" N;m er &
ames

xmlns:xsi= ...

Fixed fields", '"active, '"'create_date"
, edit _date", "editor'

private static OSRFRegistry regist

= OSRFRegistry.registerObject("bre"
, OSRFR
, breFieldNames),

Serialized
as Type

With Object in Registry

OSRFRegistry.registerObject("bre"
, OSRFRegistry.WireProtocol . ARRAY
, breFieldNames);

// create iInstances of OSRFOjects with registered field names
org.opensrf.util .OSRFObject osrfBreObj = new OSRFObject("‘bre');
osrfBreObj.put("deleted”, "false");

osrfBreObj.put("creator™, new Integer());

// Get data from response as OSRFObject
org.opensrf.Sys.bootstrapClient("opensrf core.xml"
, /config/opensrft");
String service = "open-i1ls.cstore";
String method = "open-ils.cstore.direct.biblio.record entry.retrieve';
org.opensrf.ClientSession session = new ClientSession(service);
org.opensrf.Request req = session.request(method, params);
org.opensrf.Result res = reqg.recv(10000); // waits up to 10 secs
org.opensrf.util .OSRFObject osrfBreObj = res.getContent();
Boolean i1sDeleted = new Boolean((String)

osrfBreObj.get("'deleted”));

OSRFRegistry from fm_IDL.xml

// Load the registry from the fm IDL.xml file

org.open_ils.i1dl.IDLParser parser
= new IDLParser("fm_ IDL.xml");
parser.parse();

// create i1nstances of any OSRFOject defined in fm_ IDL.xml
org.opensrf.util .OSRFObject osrfuUsrObj
= new OSRFObject("au');
osrfUsrObj .put("alert_message"
, 'Email address i1s i1nvalid.”);
osrfUsrObj.put("emainl™ , hull);

At this point, you can call the appropriate method to update the actor.usr
table with the data in osrfUsrObj.

Some Specific Issues

= Version Incompatibilities

= Direct Database Access vs. OpenSRF
= Evergreen Versions Again

= Overloading the Database Server

m | icense Issues

Version Incompatibilities

m Target of initial implementation was 1.6.x

= First occasion to use it was with 2.0.x
= VWhat we did:

» Hard-coded the fields for bre OSRFObiject type
= VWhat happened:

> Program crashed/would not run with 2.0.x

= VWhat should have done:

» Should have loaded the definition from
fm_IDL.xml

Direct DB Access vs. OpenSRF

= Have frequently used |DBC /w Evergreen
= Batch program

= Target version |.6.x

= What we did:
» Used |DBC to read record IDs
> Used OpenSRF to update biblio.record_entry.marc

= VWhat happened:

» Worked just fine

Evergreen Versions Again

= MARC "ingest" processing differs radically
> |.6.x handles in Perl code (OSRF method)
> 2.0.x handles at the database level

= VWhat we did:
> Just let the underlying layers handle it

= VWhat happened:

> |.6.x worked okay

> 2.0.x major DB thrashing; died repeatedly

Evergreen Versions Again
(continued)

= VWhat we should have done:
> Change Session ConnectState!

> Heart of the matter was apparently
asynchronous database operations

= What we did do:
» Added more CPUs to the VM running DB
> Added delay parameter

> Delay is based on how long prior operation
took to dispatch and return result

> Belatedly learned about config options

Overloading the DB Server

= VWhat was happening:

» OpenSRF Router dispatches each request to a
(new) service instance

» OpenSRF response returned while DB
operations finish asynchronously

= Maybe next time:
» Disable many/all indexing (ingest) functions
> Design multi-threaded program

— One (or more) threads update MARC XML
— Other threads poll queues of indexing tasks

License Issues

m GPL v. 2 is unclear about use of GPL JARs in
non-GPL programs

m GPL is generally considered a viral license

m According to conversations on IRC channel

> Intent of committers is not to require GPL'ing
all work that calls Java API

> Such discussions are not, of course, binding

m Recommend explicit Classpath Exception

Some Final Thoughts

m Java & OpenSRF

> Can play well together
> We will definitely continue to use Java

m Version changes in Evg/OpenSRF can bite

m Going Forward

> Rewrite program to take advantage of what we
learned

> Create additional Java programs
> Anxious to collaborate with other Java users

Some Final Thoughts
(continued)

m Things to do differently, include:
> Learn more about OpenSRF before coding.
> Experiment more extensively.

> Should have simplified logging (write processed
record |IDs to the DB instead of a log file).

® To add to the Java API:

> Create classes for extensively used objects.
> Build Java source for objects from fm_|DL.

Acknowledgements

= Bryan Kingsford, Alpha-G
Did 95% of coding of initial version

m Dan Wells, Calvin College

Resolved killer problem in 90 1-maintenance
regex

= Everyone who answered our questions on
the IRC channel or via email

= Backstage Library Works
= Georgia PINES Library System

Questions
and
Discussion

Alpha-G Consulting

= Data Migration

= System Administration
= Support

= Hosting

= Reporting/Data Transfer & Interchange
= Contact john@alphagconsulting.com

= Slides: http://alphagconsulting.com/EvgConf201 |/

