b 4

Y /<
OmniTl

Evergreen OpenlLS

Table of contents

1

2

Overview

... 3
Findings and ReCOMMENAAtIONSeevuiriiiriiiriieriieieeteeteeteete et et et eteste st e sabesatestesatestesatesasessesasenns 3
2.1 Evergreen STaff CENT.coooiiiiiieiettett ettt ettt et e b et esbe et eneas 3
2.1.1 Migrate From XULRUNDETccccooiiiiiiiiiiiiiiiieeeeeete ettt ettt et e et sneesseeseneeens 3
2.1.2 Reduce APT ROUNA TTIPS .eeeveruiieiiiiiiieeieeteet ettt et ettt ettt eateeateeate st e et e sasesaaeeae 3
2.1.3 INEITACE TESHING ..ecuiiieiiieeiieeiee ettt ettt e et e et e e st e e nbeeenbeeenseeesnessaesnnseens 4
2.1.4 Ul Framework PerfOrmANCE.cc.eiieiiieeieiiieeceiiee ettt et e ceiree e eetree e e sareeeeesaeeeeanaeeeensseeesnnes 4
2.2 OPENSRE MeSSAZING LAYETcocuiiiiiiiiiiiiiieiiieeeiie ettt s ettt e et e st e sse e sesteeenteeenreesneesaneesane 4
2.2.1 Framework OVErheadcoooiiiiiiiiiii ettt e e e tae e e e anae e e naaeeenneas 4
2.2.2 Jabber Server Point-0f-Failurec.ccccoiiiiiiiiiiiiiccieececee ettt e ree e e e 4
2.2.3 Undispatched Method CallSccccuiieiiiiiiiiiiiecieeie ettt et e et e eaeeeesaeeenneens 5
2.2.4 Testing and Regression SUILE........cccceiiiiiiiiiiiriiiiiieieeteeieete ettt ettt 5
2.2.5 NoOn-performant MethOdScccciiiiiiieiiieiieciiecce ettt e e e sareeenaesenneeens 5
2.3 POSEETESQL DAtaDaSE......ccueeicuiiiiiieeiiieiee ettt et et e et e e et e e et e e ebee e beeesaeeesteeenteeebeeeseeeaneeens 5
2.3.1 Query and Stored Procedure Optimizationscccccecueeiieriiniiniiiniiiiieiieeieeteeteeeeete e 5
2.3.2 Trigger OPHiMIZatiOnsc.cooiiiiiiiiiieeeeeee ettt et e et e 10
P32 T S 703 3§ Vcteta (o3 0 oo Yo) 11 4 V-0 SRS 10
2.3.4 Tracking PostgreSQL RELEASESc.cecueriuiriiiriiiriieiieieeie ettt ettt et et ettt 10
2.3.5 Evaluate Alternate Database Replication Optionsccccceeveriiiiiiinienieniieneeeeieeieeieeenn 10
2.3.6 Performance Monitoring and TUNINEG.......c.ccceoeeiiriiiriiiniiieieeie ettt ettt 11

1 Overview

This document contains the summary findings of our review of the Evergreen OpenlILS software system.
This review was conducted in 2013 with the assistance and testing resources of the MassLNC library
consortium. Our analysis was separated into three components of the system: the staff client, the
messaging layer, and the underlying relational database.

2 Findings and Recommendations

2.1 Evergreen Staff Client

The current Evergreen Staff Client is composed of a XULRunner application deployed via a Firefox
extension and run locally on client machines. The Evergreen community has already formed a consensus
around moving away from the XULRunner platform and developing a new client based on modern
HTML5 and Javascript technologies that are not tied to a specific browser or delivered as a browser
extension.

2.1.1 Migrate From XULRunner

While XULRunner in the past offered a method of developing rich client applications that was not
possible, or was significantly more cumbersome, to achieve with plain HTML/CSS/JS, that advantage has
diminished outside of a few specific features (e.g. client side file I/O and device access through XPCOM).

Deployment of updates to a XULRunner based staff client requires more coordination, and action by end
users or the staff responsible for the maintenance of end user machines. This complication is avoided by a
web application, for which updates and fixes can be much more easily deployed in a user-transparent
manner.

Modern JS libraries like Dojo, YUI, jQuery, Angular, etc. have almost entirely closed this gap in interface
functionality, and in nearly all cases unbind an application developed with them from specific browsers
and releases.

2.1.2 Reduce API Round Trips

Wherever possible, minimize the number of repeated calls from the client to the OpenSRF messaging
layer — particularly for the same type of information. This problem was most evident on screens in the
staff client displaying tables of results (e.g. patron and catalog searches) or associations (e.g. holds and
histories for a patron).

Providing set-returning variations of methods, or using the ones already present, can greatly cut the
number of separate calls the client needs to make. Take advantage of the flesh feature already present to

Evergreen OpenlLS / 3

collect and return related data relevant to the particular Evergreen screen or view, instead of issuing
separate API calls to collect the data piecemeal.

2.1.3 Interface Testing

With the likely move to a standard HTML5/JS client interface, implementing a comprehensive testing
framework in parallel to that effort may be useful to encourage early and full adoption. There are several
options, but the open-source Selenium project offers a featureful and relatively language and platform
agnostic system for automated testing within a variety of browsers, and provides an API for the creation
and management of individual tests. Additionally, the use of Selenium, or similar, can be tied into the
BuildBot continuous-integration suite employed by the Evergreen project.

2.1.4 Ul Framework Performance

The current staff client makes use of the Dojo JS framework. Dojo is a comprehensive and full featured UI
framework. With that extensive feature list does come a larger footprint if using standard/uncustomized
builds. Dojo provides a method to package custom builds, containing only the framework functionality
(and associated stylesheets and static content) necessary.

Using these customizable builds to prevent the unnecessary transfer of features and plugins not used by
Evergreen will reduce the footprint of the framework files downloaded by the user’s client, as well as
provide a minified package that is bundled into the smallest number of downloads necessary, thereby
reducing the number of HTTP requests issued.

2.2 OpenSRF Messaging Layer

The OpenSRF messaging layer is a Jabber/XMPP based JSON-encapsulating method broker.

2.2.1 Framework Overhead

As observed on the test environment provided by MassLNC, the OpenSRF messaging system does not
introduce any significant overhead to method calls. Processing of incoming method requests, dispatching
to a worker drone, and the return of the method’s results to the caller occur in milliseconds. Network
latency between the staff client site and the Evergreen servers, in combination with the time spent within
the method itself, are much more likely to contribute significantly to the wallclock time of method calls via
OpenSREF.

2.2.2 Jabber Server Point-of-Failure

The Jabber/XMPP server exposes a single point of failure for the messaging layer. While any number of
drone servers may continue to function without incident and be capable of processing method calls, if the
headnode experiences a failure clients will be unable to transmit method requests to the drones, or receive
responses back from them.

Evergreen OpenlLS / 4

2.2.3 Undispatched Method Calls

While the drone-worker model employed by OpenSRF enables simple horizontal scaling of capacity, the
framework does not appear to provide durability of method calls when drones are not present.

2.2.4 Testing and Regression Suite

Regular performance/regression testing against the OpenSRF messaging layer can be employed to
identify methods with poor performance profiles. The Evergreen project formerly used Constrictor for
some testing, but notes have indicated that Constrictor was replaced by a more continuous-integration
focused tool, BuildBot, and that the previous system may not have survived the migration to new version
control and issue tracking workflows.

While a CI framework like BuildBot is invaluable for ensuring the correctness of changes, the commentary
indicates Constrictor was specifically designed for load/performance testing. Including full coverage of
the OpenSRF-exposed methods in a unit test like suite of Constrictor scripts can help to expose the most
problematic methods, and protect against what could otherwise be performance regressions during future
development.

2.2.5 Non-performant Methods

Because the general overhead of the OpenSRF messaging framework is low, the performance of individual
methods exposed by OpenSRF can vary quite significantly. It is therefore important at the OpenSRF layer
to identify which methods contribute the most to user-perceived performance issues.

Methods which are called more frequently than necessary for different instances of the same type of data
may benefit from the addition of set-returning variants or, perhaps, more conscientious use from the
client layer; analysis of any database queries or access patterns; reduction in expensive computations that
may be candidates for caching, either through direct caching of the method’s return values based on
inputs, or at a lower level such as selective use of materialized views on complex relational data that has a
low to moderate rate of change.

2.3 PostgreSQL Database

The Evergreen OpenlILS system uses PostgreSQL as its underlying relational database.

2.3.1 Query and Stored Procedure Optimizations

Based on database log performance reporting performed against the production logs of two deployments
of Evergreen OpenlILS, OmniTI identified the most time-consuming queries. A closer inspection was
performed and several optimizations were suggested.

Proposed changes to the function evergreen.ranked_ volumes() included inlining nested function calls,
removing function calls from the main SELECT that were only referenced inside of the WINDOW, and

Evergreen OpenlLS / 5

converting it to a basic PL/PGSQL functional to provide access to variables, allowing a more efficient call

to determining the org unit depth value.

CREATE FUNCTION evergreen.ranked_volumes(
p_bibid bigint,
p_ouid integer,
p_depth integer DEFAULT NULL::integer,
p_slimit public.hstore DEFAULT NULL::public.hstore,
p_soffset public.hstore DEFAULT NULL::public.hstore,
p_pref_1lib integer DEFAULT NULL::integer,
p_includes text[] DEFAULT NULL::text[]
) RETURNS TABLE(
id bigint,
name text,
label_sortkey text,
rank bigint
)
LANGUAGE plpgsql
STABLE
AS $_%
DECLARE
v_depth int4;
BEGIN
v_depth := coalesce(
p_depth,
(
SELECT depth
FROM actor.org_unit_type aout
INNER JOIN actor.org_unit ou ON ou_type = aout.id
WHERE ou.id = p_ouid
)>
p_pref_lib
)5

RETURN QUERY
WITH RECURSIVE descendant_depth AS (
SELECT ou.id,
ou.parent_ou,
out.depth
FROM actor.org_unit ou
JOIN actor.org_unit_type out ON (out.id = ou.ou_type)
JOIN anscestor_depth ad ON (ad.id = ou.id)
WHERE ad.depth = v_depth
UNION ALL
SELECT ou.id,
ou.parent_ou,
out.depth

Evergreen OpenlILS / 6

FROM actor.org_unit ou
JOIN actor.org_unit_type out ON (out.id = ou.ou_type)
JOIN descendant_depth ot ON (ot.id = ou.parent_ou)
), anscestor_depth AS (
SELECT ou.id,
ou.parent_ou,
out.depth
FROM actor.org_unit ou
JOIN actor.org_unit_type out ON (out.id = ou.ou_type)
WHERE ou.id = p_ouid
UNION ALL
SELECT ou.id,
ou.parent_ou,
out.depth
FROM actor.org_unit ou
JOIN actor.org_unit_type out ON (out.id = ou.ou_type)
JOIN anscestor_depth ot ON (ot.parent_ou = ou.id)
), descendants as (
SELECT ou.* FROM actor.org_unit ou JOIN descendant_depth USING (id)

SELECT ua.id, ua.name, ua.label_sortkey, MIN(ua.rank) AS rank FROM (
SELECT acn.id, aou.name, acn.label_sortkey,
RANK() OVER w
FROM asset.call number acn
JOIN asset.copy acp ON (acn.id = acp.call_number)
JOIN descendants AS aou ON (acp.circ_lib = aou.id)
WHERE acn.record = p_bibid
AND acn.deleted IS FALSE
AND acp.deleted IS FALSE
AND CASE WHEN ('exclude_invisible acn' = ANY(p_includes)) THEN
EXISTS (
SELECT 1
FROM asset.opac_visible copies
WHERE copy_id = acp.id AND record = acn.record
) ELSE TRUE END
GROUP BY acn.id, acp.status, aou.name, acn.label_sortkey, aou.id
WINDOW w AS (
ORDER BY
COALESCE(
CASE WHEN aou.id = p_ouid THEN -20000 END,
CASE WHEN aou.id = p_pref_lib THEN -10000 END,
(SELECT distance - 5000
FROM actor.org_unit_descendants_distance(p_pref_lib) as x
WHERE x.id = aou.id AND p_pref lib IN (
SELECT q.id FROM actor.org_unit_descendants(p_ouid) as q)),
(SELECT e.distance FROM actor.org_unit_descendants_distance(p_ouid)

Evergreen OpenlLS / 7

as e WHERE e.id = aou.id),
1000
)>

evergreen.rank_cp_status(acp.status)
)
) AS ua
GROUP BY ua.id, ua.name, ua.label_sortkey
ORDER BY rank, ua.name, ua.label_sortkey
LIMIT (p_slimit -> 'acn')::INT
OFFSET (p_soffset -> 'acn')::INT;
END;
$_%;

Another query identified in the log analysis was reviewed and a conversion to a function call proposed.
The query in question used asset.call_number and inner joined against asset.copy. The proposed function
conversion does away with the inner join and instead looks initially at relevant records in asset.copy, and
using a PL/PGSQL cursor steps through them and queries against asset.call_number individually. In the
test environment provided by MassLNC, the performance was observed to change from about 13 seconds
to under 3 milliseconds.

CREATE OR REPLACE FUNCTION asset.some_clever_name(IN p_limit INT4, VARIADIC
p_circ_libs INT4[])
RETURNS TABLE (record INT8, create_date timestamptz) as $$

DECLARE
v_results public.hstore := '';
v_seen public.hstore := '';
v_records public.hstore := '';
v_oldest timestamptz := NULL;
v_c_oldest timestamptz = NULL;
v_found INT4 := 0;
v_circ_lib INT4;
v_record int8;
v_temprec record;
v_iter INT4;
v_cursor REFCURSOR;
BEGIN
FOREACH v_circ_1lib IN ARRAY p_circ_libs LOOP
v_iter := 0;
v_seen := '';

v_c_oldest := NULL;
open v_cursor NO SCROLL FOR
SELECT c.call number, c.create_date
FROM asset.copy c
WHERE c.circ_lib = v_circ_lib AND NOT c.deleted
ORDER BY c.create_date DESC;

LOOP

Evergreen OpenlILS / 8

FETCH v_cursor INTO v_temprec;
EXIT WHEN NOT FOUND;

v_iter := v_iter + 1;

-- If we already have better data than current row (newer records in
EXIT WHEN v_oldest IS NOT NULL AND v_oldest >= v_temprec.create_date;

-- Ignore if we've seen given call number in current query (for current
circ_1ib)

CONTINUE WHEN v_seen ? v_temprec.call number::TEXT;

v_seen := v_seen || public.hstore(v_temprec.call number::TEXT, '1');

-- If we don't have yet record for given call_number, we need to get it
IF v_records ? v_temprec.call number::TEXT THEN
v_record := v_records -> v_temprec.call number::TEXT;
ELSE
SELECT cn.record INTO v_record FROM asset.call number cn WHERE cn.id =
v_temprec.call number;
CONTINUE WHEN NOT FOUND;
CONTINUE WHEN v_record <= 0;

v_records := v_records || hstore(v_temprec.call number::TEXT,
v_record: :TEXT);
END IF;

-- If results already contain "better" date for given record, next row
IF v_results ? v_record::TEXT THEN
CONTINUE WHEN (v_results -> v_record::TEXT)::timestamptz >
v_temprec.create_date;

END IF;
v_found := v_found + 1;
v_results := v_results || hstore(v_record::TEXT,

v_temprec.create_date::TEXT);
IF v_c_oldest IS NULL OR v_c_oldest > v_temprec.create_date THEN
v_c_oldest := v_temprec.create_date;

END IF;

EXIT WHEN v_found = p_limit;
END LOOP;

CLOSE v_cursor;
-- Update oldest information based on oldest row added in current loop

IF v_oldest IS NULL OR v_oldest < v_c_oldest THEN
v_oldest := v_c_oldest;

Evergreen OpenlILS / 9

END IF;

END LOOP;
RETURN QUERY SELECT KEY::INT8, value::timestamptz FROM each(v_results) ORDER BY
value::timestamptz DESC LIMIT p_limit;
RETURN;
END;
$$ language plpgsql STRICT;

2.3.2 Trigger Optimizations

Aside from the triggers employed by Slony-I for replication purposes, Evergreen itself makes extensive
use of row-level triggers. At least one of these fires off frequently enough that it was reported as a
significant time consumer in the production log performance reports. Upon further inspection it was seen
to be a PL/PerlU function, and most invocations were quite fast, but the trigger function incurred an
additional startup cost the first time it was used on a newly started PostgreSQL backend process due to
external Perl module dependencies. This startup cost doubled the trigger function’s run time and led to an
inconsistent performance profile.

Proposed remedies were to either accept the initial cost per database backend; to allow the use of a
connection pooler like PgBouncer to potentially greatly reduce the number of times the cost is incurred; or
to pre-load these Perl module dependencies in the PostgreSQL server configuration.

2.3.3 Connection Pooling

Encourage the use of a database connection pooler, such as PgBouncer. This can help to reduce the
initialization cost of PL/Perl or similar functions which need to be compiled before use in each new
database backend, particularly when those functions contain external module dependencies. A pooler
such as PgBouncer also opens up more transparent options for scaling read-only database loads
horizontally.

2.3.4 Tracking PostgreSQL Releases

MassLNC production installations are currently two releases behind the stable version of PostgreSQL.
Testing Evergreen compatibility with the latest stable releases and providing straightforward upgrade
paths/tools for Evergreen administrators would permit the performance and stability enhancements in
most new versions of PostgreSQL to be more rapidly adopted.

2.3.5 Evaluate Alternate Database Replication Options

Slony-I is currently in production at some consortium members. While it is a robust, and in some cases
(e.g. minimal downtime upgrades between major releases) ideal, replication system, the fact that it is
entirely trigger-based can negatively impact performance; as well as introduce additional maintenance

Evergreen OpenlLS / 10

and upgrade burdens on administrators when any schema changes occur, as those require special
handling with Slony-I’s trigger model.

Modern PostgreSQL releases, including those in production within MassLNC, support streaming
replication which imposes very minimal overhead on the primary/read-write database server, and
transparently ships schema modifications without the need for additional tools, processes, or
configuration, as is the case with Slony-I.

2.3.6 Performance Monitoring and Tuning

A review of the production PostgreSQL configurations for MassLNC consortium members revealed some
tuning had already been performed. However, query logging was disabled, which makes it difficult to
measure the actual impact of any changes. It is recommended that regular monitoring and performance
reporting be performed, particularly when new releases are deployed. This monitoring should not be
limited to test or staging installs, but should be performed whenever possible on live, production systems
to best capture the performance profiles of the Evergreen system under load.

OmniTI provided several recommended configuration changes which result in PostgreSQL server logs
that can be parsed accurately by tools such as pgbadger.

Evergreen OpenlLS / 11

